Exponential decay of expansive constants

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrete sums for the rapid determination of exponential decay constants.

Several computational methods are presented for the rapid extraction of decay time constants from discrete exponential data. Two methods are found to be comparably fast and highly accurate. They are corrected successive integration and a method involving the Fourier transform (FT) of the data and the application of an expression that does not assume continuous data. FT methods in the literature...

متن کامل

Meson Supermultiplet Decay Constants

We use a covariant supermultiplet theory to determine the primary coupling constant associated with several types of two-body meson decay. Despite the diverse range of decays considered the primary coupling constant is surprisingly uniform. We envisage the extension of the techniques to heavy quark cases, including as preliminary examples the calculation of the D * + and D * 0 total decay width...

متن کامل

Decay Constants fD ∗ s

We calculate the decay constant of Ds and D ∗ s with B̄ 0 → D+l−ν and B̄0 → D+D s decays. In our analysis we assume the factorization ansatz and use two different form factor behaviours (constant and monopole-type) for F0(q 2). We also consider the QCDpenguin contributions in hadronic decays within the NDR renormalization scheme in a NLO calculation. We estimate the decay constant of the Ds meson...

متن کامل

Lattice Calculations of Decay Constants

Lattice attempts to compute the leptonic decay constants of heavy-light pseu-doscalar mesons are described. I give a short historical overview of such attempts and then discuss some current calculations. I focus on three of the most important sources of systematic error: the extrapolation to the continuum, the chiral extrapolation in light quark mass, and the eeects of quenching. I brieey discu...

متن کامل

Domination with exponential decay

Let G be a graph and S ⊆ V (G). For each vertex u ∈ S and for each v ∈ V (G) − S, we define d(u, v) = d(v, u) to be the length of a shortest path in 〈V (G)−(S−{u})〉 if such a path exists, and∞ otherwise. Let v ∈ V (G). We define wS(v) = ∑ u∈S 1 2d(u,v)−1 if v 6∈ S, and wS(v) = 2 if v ∈ S. If, for each v ∈ V (G), we have wS(v) ≥ 1, then S is an exponential dominating set. The smallest cardinalit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Science China Mathematics

سال: 2013

ISSN: 1674-7283,1869-1862

DOI: 10.1007/s11425-013-4602-4